The Statement of the Prime Number Theorem

Chebyshev's result $\pi(x)>a x / \log x$ is far stronger than $\pi(x)>c \log x$, seen in Problem Sheet 1, yet is still a long way from the truth. It will be shown that

$$
\pi(x) \sim \frac{x}{\log x}, \quad \text { i.e. } \quad \lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=1 .
$$

This is the Prime Number Theorem, conjectured by Euler in 1762, Gauss in 1791 and Legendre in 1798 and proved independently by J. Hadamard and C. de la Vallée-Poussin in 1896.

We will not in fact prove the Prime Number Theorem for $\pi(x)$ but, just as we deduced bounds on $\pi(x)$ from those on $\psi(x)$, we will prove in the following sections that

$$
\psi(x) \sim x .
$$

This is equivalent to the Prime Number Theorem as we will now show.
Corollary 2.25

$$
\pi(x) \sim \frac{x}{\log x} \quad \text { if, and only if, } \quad \psi(x) \sim x
$$

Proof From (13) and (15) we get

$$
\pi(x)=\frac{\psi(x)+O\left(x^{1 / 2}\right)}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)=\frac{\psi(x)}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

Thus

$$
\frac{\pi(x)}{x / \log x}=\frac{\psi(x)}{x}+O\left(\frac{1}{\log x}\right)
$$

Therefore, on the assumption that the limits exist, they must satisfy

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \log x}=\lim _{x \rightarrow \infty} \frac{\psi(x)}{x}
$$

Aside on Prime Number Theorem

Though $x / \log x$ is a good approximation to $\pi(x)$ it is not a very good approximation. For a better approximation recall

$$
\begin{equation*}
\pi(x)=\frac{\theta(x)}{\log x}+\int_{2}^{x} \theta(t) \frac{d t}{t \log ^{2} t} . \tag{24}
\end{equation*}
$$

The prime number theorem in the form $\psi(x) \sim x$ is, by Lemma 2.16, equivalent to $\theta(x) \sim x$, which 'suggests' replacing $\theta(x)$ in (24) by x. This would 'suggest' an approximation to $\pi(x)$ of

$$
\frac{x}{\log x}+\int_{2}^{x} t \frac{d t}{t \log ^{2} t}=\frac{x}{\log x}+\left[t\left(-\frac{1}{\log t}\right)\right]_{2}^{x}+\int_{2}^{x} \frac{d t}{\log ^{2} t}=\int_{2}^{x} \frac{d t}{\log t}+\frac{2}{\log 2}
$$

having integrated by parts, starting by integrating $1 /\left(t \log ^{2} t\right)$. The better approximation to $\pi(x)$ may thus be given by the logarithmic integral

$$
\operatorname{li} x=\int_{2}^{x} \frac{d t}{\log t}
$$

Looking back at its derivation above,

$$
\operatorname{li} x=\frac{x}{\log x}-\frac{2}{\log s}+\int_{2}^{x} \frac{d t}{\log t}
$$

The integral here can be estimated by splitting at \sqrt{x}, as seen in the proof of Theorem 2.20, giving

$$
\operatorname{li} x=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right)
$$

By repeated integration by parts and an estimation of the final integral by splitting at \sqrt{x}, we have

$$
\operatorname{li} x=\int_{2}^{x} \frac{d t}{\log t}=\sum_{j=0}^{m} j!\frac{x}{\log ^{1+j} x}+O_{m}\left(\frac{x}{\log ^{m+2}}\right)
$$

for $m \geq 1$. Be careful, in some books lix denotes the integral

$$
\int_{0}^{x} \frac{d t}{\log t}=\lim _{\varepsilon \rightarrow 0}\left(\int_{0}^{1-\varepsilon} \frac{d t}{\log t}+\int_{1+\varepsilon}^{x} \frac{d t}{\log t}\right)
$$

whilst other books call this latter integral Lix.

